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ABSTRACT 

Purpose: The involvement of wear, friction and lubrication in engineering systems and industrial 

applications makes it imperative to study the various aspects of tribology in relation with advanced 

technologies and concepts. The concept of Industry 4.0 and its implementation further faces a lot 

of barriers particularly in the developing economies. Real-time and reliable data is an important 

enabler for implementation of the concept of Industry 4.0. For availability of reliable and real-time 

data about various tribological systems is crucial in applying the various concepts of Industry 4.0. 

This paper attempts to highlight the role of sensors related to friction, wear and lubrication in 

implementing Industry 4.0 in various tribology related industries and equipment. 

Design/methodology/approach: A through literature review has been done to study the 

interrelationships between the availability of tribology related data and implementation of Industry 

4.0 are also discussed. Relevant and recent research papers from prominent databases have been 

included. A detailed overview about the various types of sensors employed in generating 

tribological data is also presented. Some studies related to application of machine learning and 

Artificial Intelligence are also included in the paper. A discussion on fault diagnosis and cyber 

physical systems in connection with tribology has also been included. 

Findings: Industry 4.0 and tribology are interconnected through various means and the various 

pillars of industry 4.0 such as big data, Artificial Intelligence can effectively be implemented in 

various tribological systems. Data is an important parameter in effective application of concepts 

of industry 4.0 in the tribological environment. Sensors have a vital role to play in the 

implementation of industry 4.0 in tribological systems. Determining the machine health, carrying 

out maintenance in off-shore and remote mechanical systems is possible by applying online-real-

time data acquisition. 

Originality: The paper tries to relate the pillars of Industry 4.0 with various aspects of tribology. 

The paper is a first of its kind wherein the interdisciplinary field of tribology has been linked with 

industry 4.0. The paper also highlights the role of sensors in generating tribological data related to 

the critical parameters such as wear rate, coefficient of friction, surface roughness which is critical 

in implementing the various pillars of industry 4.0.   
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1. Introduction 

The extensive involvement of friction, wear and lubrication in the variety of engineering 

applications makes tribology an important field for the overall developments in the industrial and 

economic fronts(Haq and Anand, 2018b) (Kerni, Raina and Haq, 2018)(Kerni, Raina and Haq, 

2019). According to Stachowiak (Stachowiak, 2017), “during the industrial revolution, it became 

clear that without advancements in tribology the technological progress would be limited.” 

Derived from the Greek word “tribos” the word “Tribology”, deals with the science of friction, 

wear and lubrication. Tribology being a surface phenomenon, surface roughness plays a vital role 

in determining the tribological properties of materials. This term was officially coined by Jost in 

1966 stating it as the science of interacting surfaces and the relative motion among them(Jost, 

1966). Moreover, it is an interdisciplinary field involving the concepts of chemistry, physics, 

material science, mathematics and engineering(Charoo and Wani, 2017)(Anand et al., 2017). 

Despite its contribution in almost all processes in industry and our day-to-day life, it continues to 

be the unknown for most of field. As reported by Popov in 2018, the field of tribology remains 

unknown for most of the engineering researchers (Popov, 2018). Tribology is the backbone of 

every industry involving machinery. With each industrial revolution, the machinery became more 

sophisticated and more emphasis on their maintenance gave the space for tribological research. 

Enrico described the various stages of tribological era’s in accordance with the industrial 

revolution(Ciulli, 2019).  

The industrial and tribological revolution can be divided into the four different eras: from 1750 to 

1850, from 1850 to 1950, from 1950 to 2000, and from 2000. The first industrial revolution started 

in year 1784, which very close with the first tribological studies performed by coulomb in year 

1781. Second industrial revolution started in 1870 that is said to be the motivation for 

developments in the field of lubrication by Reynold. As Jost Reports officially coined the term 

“tribology” in year 1966, the third industrial revolution came into existence (1969). With further 

advancements in the field, new term called tribotronics (2008) was coined which gave the way for 

fourth industrial revolution (2011). The Fundamental industrial and tribological developments and 

there relation with each other is shown in Figure 1(Ciulli, 2019). 



 

Figure 1: Tribological phases in industrial development  

From the above information, it is quite evident that there is the deep relation of tribology with the 

industrial development and with advancement in the industries, there must be significant change 

in the modalities of tribology. Tribology plays an important role in the energy and environmental 

issues. Kenneth has reported the impact of tribology on the CO2 emission and energy 

consumption(Holmberg and Erdemir, 2019). Around 23% of the total global energy goes to 

overcome the energy losses from tribological contacts. From the economic point of view, around 

2,536,000 million euros annually are losses generated due to the tribological contacts, in which 

73% is due the friction and 27% is due to the wear. By applying the new methodologies of 

tribology and materials engineering, it is estimated that 40% of total energy loses due to friction 

and wear can be reduced by a long-term plan of 15 years and 18% in the short-term plan of 8 years 

(Holmberg and Erdemir, 2017).  

Tribological studies are very important for the industrial setups as they are main energy 

consumption sectors. It is estimated that 15%-20% of the total energy in paper mill industry is 

used overcome the friction (Holmberg et al., 2013). In mining industry, around 40% of the total 

energy consumption goes to overcome the friction (Holmberg et al., 2017). There is the general 

estimation that in the industrial sector, around 20% of energy consumption goes to overcome the 

friction and 14% of the friction loses goes in the account of wear loss (Holmberg and Erdemir, 

2017).The total percentage energy loss due to friction in each sector is shown in the Figure 2, 

wherein it can be seen that the energy losses due to transportation, energy and industrial sectors 

are huge and can led to huge economic impact on nations and corporations(Nosonovsky and 



Bhushan, 2010)(Ul Haq et al., 2021). Therefore, there is a dire need to look for better tribological 

practices which would reduce these losses due to friction.   

 

 

Figure 2: Percentage of Total Energy loss due to friction in various sectors(Holmberg and Erdemir, 2017) 

Further, Figure 2 also indicates that tribology is very important from economic, energy, and 

environment point of view. This can only be done by employing high-end sensors in the 

tribological apparatus, moving towards the tribology 4.0 and cyber physical systems.  The 

digitalization of tribology is very important for the current trends in industry 4.0. The ultimate aim 

of the tribology society is to make the tribology autonomous to provide results that are accurate. 

From the above literature we mentioned how the industrial revolution was accompanied by the 

tribological developments or the digitization of the tribology. To meet the needs of industry 4.0, 

the tribology got integrated with computer systems to provide the better coatings for surfaces, 

material for tools, Lubrication for better performance. 

 Tribological data from the sensors is analyzed by the AI and ML algorithms to provide the better 

understanding of the process and reducing the time and cost by modelling the process and 

predicting the impact of various experimentation conditions on various tribological properties. 

Figure 3 shows the main components of tribological system interacting with the sensors and 

actuators for producing the real time data, which can easily be interpreted with the help of software 

developed for the said cause. The sensors installed on the system provide the information for 

vibration, temperature, friction, wear, oil condition etc. The signals are sent to the control unit, 

which are processed to give the output based on the computational algorithms fed to the decision 

or real-time data acquisition part.  
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The current paper is structured in manner to focus on various aspects of tribological data w.r.t the 

concept of Industry 4.0. Apart from discussing the basic concepts, relevant and recent literature 

and research studies have been discussed with an aim to relate tribology with Industry 4.0. 

Prominent research databases have been searched using relevant keywords.  Based on the literature 

studied, it came to the fore that there is a need to relate the various aspects of tribology with the 

concept of Industry 4.0. The paper is state of art review, which encompasses almost all the 

important developments in the field of sensors and the tribology. 

 

Figure 3: Tribological system with sensors 

2. Sensors and Tribology 

The study of tribology with electronics is very important. With the advancements in the 

electronics, sensors that are more efficient are developed. Main purpose of these sensors is to detect 

the lubrication condition, wear, friction, temperature and vibration(Murphy et al., 2005). The deep 

interrelation between the tribology and electronics was reported in 2008 and term tribotronics was 

coined (Glavatskih and Höglund, 2008). The term tribotronics is equipped with the online sensors, 

which help us get the real-time data; hence, the machine performance and health can be analyzed 

and comprehended in much better way. With the better understanding of sensors for tribology, the 

rundown time for long-range applications of machine can be reduced. This is mainly done by the 

study of vibration patterns and thermography (Khan and Starr, 2006)(Younus and Yang, 2012). 

Some important applications of sensors in tribology are lubricant health monitoring, wear studies 

and surface roughness studies. Figure 4 shows the importance of sensors in the field of tribology 

specifically for wear, friction, lubrication and surface roughness. 



 

Figure 4: Sensors and various tribological domains 

2.1. LUBRICATION AND SENSORS 

Lubricant oil is one of main components of every machine to keep it properly working(Shafi, Raina 

and Haq, 2019)(Shafi, Raina and Haq, 2018) (Wani Khalid Shafi, Raina and Ul Haq, 2018). The 

prolonged use of the lubricant oil renders the oil unfit for use due to loss in the rheological, 

tribological and thermal properties of the lubricant. Moreover, the wear debris which gets trapped 

in the lubricant oil also deteriorates the properties of the oil(W.K. Shafi, Raina and Ul Haq, 2018). 

A good lubricant flow is necessary for temperature reduction, wear reduction and to keep the flow 

of material or particles due to material wear (Wang et al., 2018). Oil monitoring is done by offline 

methods, which require experience in handling the equipment like ferrography and spectrometric 

analysis(Matsumoto, Tokunaga and Kawabata, 2016)(Guan et al., 2011).  

Online monitoring methods consist of techniques such as optical, photoelectric magnetic, 

inductive, capacitance, ultrasonic, electrical impedance, online X-ray spectroscopy and electro-

static charge based techniques  (Iwai et al., 2010) (Kuo, Chiou and Lee, 1997) (Y. Wu et al., 2016) 

(Hong et al., 2015) (Minasamudram, Agarwal and Venkateswaran, 2013) (Appleby et al., 2013) 

(Dingxin, Zheng and Jianwei, 2011) (Xu et al., 2015) (Itomi et al., 2006) (Kayani, 2009) (Powrie, 

2000). Among the above-mentioned methods, capacitance based sensors are widely explored due 

to the simple design, thermal stability and non-contact measurement (Stevan et al., 2015). The 

authors (Du and Zhe, 2011)(Wu et al., 2013) give the advantages and disadvantages of all the 

above-mentioned sensors/methods. New methods involving hybrid sensor technology have been 



studied which involves the combination of capacitive, ultrasonic and inductive sensors to generate 

the hybrid model for the analysis of lubricant (Matsumoto, Tokunaga and Kawabata, 

2016)(Appleby et al., 2013). The sensors in a lubricant study can detect the wear debris, viscosity, 

moisture content, acidity and soot. The brief description about the nature of the operation of sensor 

and their job in the study is given in table 1.  

Table 1: Brief description about the various types of sensors for lubrication and their mode of operation 

Type of Sensor Methodology Material, Change 

Detected/Size 

Description 

Optical (Du et al., 

2013) 

Debris morphology Solid Debris/ 

5-160µm 

Difficult setup, gets 

affected by lubricant 

transparency.  

Optical (Haiden et 

al., 2015) 

Dark Field 

Microscopy video 

setup 

Metallic Debris/ 

230 nm 

Works on Brownian 

motion. Hence, with the 

decrease in viscosity, 

the tracking becomes 

easy. 

Optical-Resistive 

(Sanga et al., 2019) 

quasi-digital sensor 

with opto-resistive 

technique 

Change in Color/ 

From 0.5 to 8.0  

(as per ASTM) 

Detects the 

oxidation/contamination 

of the lubricant by 

change in color. Cost 

effective and high 

precision.  

Optical (Pandreka, 

2015) 

Microfluidic counter Ceramic beads/ 

100µm 

Detects the bacteria in 

the lubricant/fuel by 

photo-detector. 

Capacitive (Raadnui 

and Kleesuwan, 

2005) 

relative variation of 

lubricant degradation 

Ferrous Particles, 

Sio2/ 

100-120µm 

Low cost, detects the 

failure at the early stage.  

Capacitance  (Liu et 

al., 2000) 

Dielectric constant 

with Bulk 

capacitance sensor 

NA Low sensitivity, 

water influence, 

large sensing 

zone 

Capacitance (Shen et 

al., 2016) 

Microfluidic sensor Metallic debris/ 

0-40 μm 

High sensitivity and low 

throughput 

Capacitance 

(Nemarich, Whitesel 

and Sarkady, 1988) 

Ultrasonic oil debris 

sensor 

Solid debris/ Air 

Debris 

170-1000µm 

 

It can detect solid and air 

debris, but it cannot 

differentiate between 

metallic and non-

metallic.  



Ultrasonic (Xu et al., 

2015) 

Change in Acoustic 

Amplitude with 

inductive sensors 

Metallic, ceramic 

and air debris/ 

50-310 μm 

This system can 

differentiate between 

the Metallic, air and 

ceramic debris. 

 

Further, the use of particular sensor depends upon the contamination to be detected and the 

parameter, which are perfect for detecting the impurity or contamination. The major parameters 

are particle count, viscosity, soot apart from total acid number (TAN) and the total base number 

(TBN), etc. The dependence of sensor selection on the performance parameter is shown in Table 

2(Zhu, He and Bechhoefer, 2013).  

Table 2: Dependence of sensor selection on lubricant performance parameters. 

OIL DEGRADATION PERFORMANCE PARAMETER SENSOR REQUIRED 

Water Contamination Water Content Viscosity Sensor 

Water in Oil Sensor 

Capacitor Sensor 

Viscosity  Viscosity Sensor 

Particle Contamination 

Soot 

Viscosity Viscosity Sensor 

Wear Particle Count Capacitor Sensor 

Conductivity Sensor 

Particle Contamination 

Iron Content 

Viscosity Viscosity Sensor 

Wear Particle Count Capacitor Sensor 

Conductivity Sensor 

Oxidation pH Measurement pH Measurement 

TAN/BAN Capacitor Sensor 

Conductivity Sensor 

Viscosity Sensor 

 

Studies show that capacitor and viscosity sensors are the better among the others for the oil 

degradation studies and the operating maintenances of these sensors are low than the others (Zhu, 

He and Bechhoefer, 2013). In addition, the online monitoring of the data acquired from the 

kinematic viscosity and dielectric constant are easy to comprehend. 

Traces of Cu2+ is normal in every lubricant oil but the with the increase in the concentration it can 

lead to mechanical failure, wear and increased the roughness the of the surface that was supposed 

to be smooth. Hence, the detection of Cu2+ions is necessary to avoid the any mechanical and 

economical loss. The conventional methods to detect the metallic ions in the lubricant include 

spectrometry, Voltammetry, Atomic fluorescence spectrometry, Resonance scattering method, 

inductively coupled plasma-Mass spectrometry and colorimetric method (Kratzer et al., 2014) 



(Tyszczuk-Rotko et al., 2016) (Kudr et al., 2017) (Yang et al., 2014) (Busa et al., 2016) (Verma 

et al., 2017). The mentioned methods are accurate and reliable but the equipment’s involved in 

these methods are expensive and require extensive experience to detect the presence. Hence, the 

focus of researchers shifted towards the fluorescence-based probes are sensitive, reliable, and 

quick and can be employed for online metallic ion probe (Aydin, 2020) (Kong et al., 2020). Until 

this date, the fluorescent probes coupled with carbon based quantum dots and semiconductor 

quantum dots have been widely used to detect the metallic ions or specifically Cu2+in the 

lubricating oil (Milindanuth and Pisitsak, 2018) (Yu et al., 2018) (Yan et al., 2018).  Recently, 

researchers have used the CsPbBr3 perovskite quantum dots in the fluorescence probe to detect the 

presence of Cu2+ (Gao et al., 2020). The device is highly sensitive (8.62µM-1) and the detection 

limit up to 0.40nm. Generally, in fluorescence type of metal ion detection, Rhodamine B 

derivatives are used as probes  (Yang et al., 2016) (Biswal et al., 2016). The rhomdamine are 

considered among the organic dyes, which have difficulty in achieving the stability (Medintz et 

al., 2006). In comparison to this, fluorescent quantum dots have good resistance towards the light 

and the wavelength can be altered by change in size of the ion particle (Kadian and Manik, 2020).   

2.2. Sensors and Surface Roughness 

Tribology being a surface phenomenon, surface roughness is one of the important parameters for 

all studies pertaining to tribology. Surface roughness not only is an important parameter in 

determining the amount of friction and wear but also plays a crucial role in the lubricant entrapment 

and the wear debris. Moreover, surface roughness can help in understanding the wear mechanisms 

especially during the run-in stage. 

 Initially the surface roughness was measured with the probe type instrument known as stylus 

(Wang et al., 1998).  Stylus is the contact method and the sharp tip of the instrument may cause 

permanent scratch to the specimen, thus new optical methods were developed to which were non–

contact in nature, which depend on the focusing, interference and speckle concepts. With further 

advancement in the field, TIS (Total Integrated System) based on diffused scattered light with 

colbenz sphere is used; the scattered light is then directed to the sensor for analysis (Harvey et al., 

2012). TIS is expensive, as it needs vacuum chamber to avoid dust.  

With further advancements in the field, interference method is developed which uses fringe 

patterns developed from the two light waves with a significant phase difference, which is further 

analyzed by Michelson interferometer (Whitehouse, 2011). This method is very sensitive to 

vibrations and hence noise is produced in the interference patterns. The equipment is bulky and 

very difficult to handle. The speckle method is also one the famous methods in determining the 

RMS value of roughness by studying the speckles of contrast of the reflected light. The ratio for 

bright to dark (B/D) spots help in determining the surface roughness (Fujii and Asakura, 1974). 

Among the all the surface roughness methods, the microscopic methods remain the important ones. 

Generally, microscopic methods are categorized into types based on principal of operation; they 

are Scanning Tunneling Microscopy, and scanning probe microscopy. Further, with the integration 



of the electronics, the system becomes more sophisticated and easy to operate and analyze the data. 

Electronic Microscopic systems have sensors which either detect the reflection or the integrated 

back-scattered signals or the stereo effect (Bhushan, 2000). Table 3 shows the various types of 

sensors used in microscopes and the various associated aspects. Microscopy is critical in 

tribological systems with regard to checking the microstructure, grain structure, hardness 

indentation, wear scars, morphology of wear debris and wear mechanisms.    

Table 3: Microscopy methods for measuring surface roughness 

METHOD OF 

MICROSCOPY 

TYPE SENSOR RESOLUTION 

SPATIAL 

RESOLUTION 

VERTICAL 

LIMITATION 

Stereo-microscopy Electronic OFET 

Sensor 

5 50 Single zooming 

system with 

small areas for 

scanning 

Integration of back-

scattered signal 

Electronic PDA 36A-

EC 

5 10-20 Requires 

conducting 

surfaces with 

hectic 

instrumentation 

Stylus Instrument  -------- APS-C 

sensor 

5-100 0.1-1 Damages 

specimen, slow 

measuring 

speed 

Scanning tunneling 

microscopy 

Optical Electroche

mical 

tunnelling 

sensors 

 

0.2 0.02 Requires 

conducting 

surfaces with 

vacuum. 

Atomic Force 

Microscopy 

AFM quartz 

tuning fork 

(QTF) force 

sensor 

0.2-1 0.02 Tapping with 

the specimen 

remains the 

issue. 

 

2.3. Sensors and Friction 

Studying the methods of friction detection and measurement is very important for the 

development of in the areas involving contacts, just like vehicular dynamics, machinery for 

manufacturing industries, printing machines, stacking machines etc. (Haq and Anand, 2018a, 

2019). Taking the case of metal forming in manufacturing industry where the friction is 

associated with high pressure due to rolling, the frictional forces and normal forces go hand in 

hand. Since the metal die interface have harsh environment, thus it is very difficult to calculate 



the normal force as well as the friction (Jeswiet, Arentoft and Henningsen, 2006).  From the 

mathematical point of view, It was Karman (Alexander, 1972) who developed the model for 

rolling and the friction involved in it. Seibel and Pomp (Siebel and Pomp, 1929) were the first 

among the researchers to apply the principles of plastic working of metals for the rolling 

situation.  Many other researchers attempted to highlight the work involving rolling and the 

friction phenomenon associated with it (Thomsen, Yang and Kobayashi, 1965)(Underwood, 

1950).  

For all the studies whether experimental or numerical, generally average values of friction were 

obtained, places with varying friction were ignored thus the need for sensors was felt. The first 

sensor for measuring forces in the metal forming and rolling was developed by Siebel and Lueg 

(Siebel and Lueg, 1933). It consisted of pin mounted on the work roll of rolling mill radially, 

which pressed down upon a load cell, which is mounted within the roll body. The main 

drawback of this sensor is that it could not measure frictional force, but the pin was later on 

used on every sensor for friction measurement. The pin sensor technique is remains the main 

and important way of determining the pressure and friction in the metals and metal composites. 

From the manufacturing point of view, the friction has been studied a lot in metal rolling 

processes(Anand et al., 2020; Anand, Haq and Raina, 2020). MacGregor measured the contact 

pressure for metals (MacGregor and Palme, 1959). Pressure distributions in hot metal rolling 

has been studied using the pin technique (Yoneyama, 2017). Conditions for measuring the 

pressure in the metal rolling by pin setup has been investigated (Tozawa et al., 1980). With 

further advancements in the domain, the multi-channel system was developed which could 

help in detecting the rolling pressure (Yoneyama, 2017). In cold metal rolling, pressure pin 

have used to detect the frictional stresses by oblique pin mechanism (Rooyen, 1957). Further 

this oblique pin mechanism has been used to detect the change in coefficient of friction using 

the contact arc method and length of arc method (Yoneyama, 2017). The same method was 

explored for checking the influence of parameters like strip tensions on the tangential shear 

stress and coefficient of friction in the roll gap due to oblique pin mechanism (Yoneyama, 

2017). The friction sensors were studied more for better acquiring better data. In this regard, 

Researchers developed sensors for detecting and measuring the frictional stresses as well as 

pressure using the pin system along the 3D force detection system (YONEYAMA and 

HATAMURA, 1987) (YONEYAMA and HATAMURA, 1989).  

Various other researchers conducted there experimentation in the same field in order to 

develop the sensors of pressure and friction measurement (Jeswiet and Nyahumwa, 1993) 

(Nyahumwa, 1996). These methods are unique and helpful in nature but there remains a 

problem, which is the gap between the pressure/detection pin and the hole in the tool. This can 

lead to leakage of deformed material. Apart from this, there lies the other problem of level 

between the sensor and the tool surface. It remains a challenge to keep them at the same level 

during the metal forming process. The researchers took this challenge and the novel sensor was 

developed using optical fiber displacement meter (Yoneyama et al., 1994). With the 

advancement in the field more methods were developed. Strain-gauge sensors with a structure 



comprising an inner shaft and an outer tube connected at the tool surface and combined with a 

thin plate at the both ends (Yoneyama, 1999). These sensors came up to overcome the previous 

challenges. These sensors did not had the gap as that of the previous ones and the level 

difference between the tool and the sensor.   

 

 

2.4. Sensors and Wear 

Wear can be defined as the gradual removal of material from the surfaces, which are in contact 

with each other and are subjected to sliding on each other (Zmitrowicz, 2006). The wear is 

important parameter to define the mechanical failure of any component or material. Wear rate 

is one of the major factors for determining the life of any mechanical system. Thus to achieve 

the better mechanical and tribological systems, we need to have the better sensors and methods 

to detect the wear. The wear progression on any system or material is classified into three 

stages (Lu et al., 2021). These are running in, steady state (stable) and end of life. In the 

running-in stage the contact is developed between the surface asperities and the plastic 

deformation of peaks/ tips is achieved which in turn flows between the tribo-pair also known 

as the wear debris. Steady state accounts for slow but constant wear debris production. This 

state is responsible for most of the machinery/operational life. As the quantity of debris starts 

increasing due to rolling, sliding, heavy loading etc., the rise in wear is seen and from which 

we can say that the system no longer functions properly, this phase is known as the end of life. 

Here the complete failure of the system is observed. Thus, a system is required, which can 

detect the wear at early stage and prevent the system failure.  The wear has been studied a lot 

but there remains a problem in detecting the wear debris. As the wear debris size reduces in 

size or the number of debris particle is less, it is very difficult to sense them (Dwyer-Joyce, 

1999) (Nilsson, Dwyer-Joyce and Olofsson, 2006).   

Common methods of wear measurements are Scanning electron microscopy, 3-D 

profilometry, Scanning electron microscope, atomic force microscope. SEM cannot give the 

better picture of wear; hence, we prefer 3D profilometry for the better understanding about 

surface topography and wear. As the thirst of knowledge increases, the new methods for 

studying the problems also evolve. One of the technique is the development of in-situ 

tribotester (Wahl and Sawyer, 2008).  In this method, a reciprocating tribotester was elevated 

on the white light scanning interferometer. With the advancement in sliding, the wear pattern 

was observed and a correlation model between the friction and wear was developed. For 

metallic surfaces, a 3D holographic microscope mounted on the pin-on-disk tribotester, which 

helped in detecting the changes during the experimentation (Korres and Dienwiebel, 2010). 

The main disadvantage of this method is that it works by employing radionuclide method, 

which is the cause for safety. To overcome the disadvantages of 3D holographic microscope, 

High precision 3D laser microscopy was developed and the wear analysis on nano-metric level 

was demonstrated (Park, Yang and Lee, 2015).   



Related to industry, it is necessary to overcome the problems of tool wear in-order to increase 

the efficiency, quality and productivity. There are severe consequences, which can cost 

someone’s life if the wear remains unchecked. Generally, the tool wear is detected by direct or 

indirect method. Direct method comprises of electrical resistance method and optical method. 

Indirect methods involve cutting force, vibration etc. Researchers have realised the direct 

methods are least important for wear measurement while are very useful as they develop the 

relationship between the tool wear and the signals from the signal during the tool operation 

(Siddhpura and Paurobally, 2013). For better monitoring and detection of wear, it is very 

important to develop the relationship from the various process parameters. Similar kind of 

work was done by the researchers and were the signals were obtained from the various sensors 

like accelerometer, force and acoustic emission for better tool monitoring during the milling 

process (Malekian, Park and Jun, 2009). Further, signals from acoustic emission and 

accelerometer were obtained from the sensors during the metal cutting process and correlation 

was established between the tool wear and the signal (Bhuiyan, Choudhury and Dahari, 2014). 

A unique method of combining the signals from the vibration sensors and employing the signal 

feature extraction for monitoring the tool wear. The above-mentioned literature is the proof 

that indirect methods are quit useful and effective in wear detection and monitoring, but there 

are certain disadvantages also, like the equipment is quite expensive, it’s very difficult to 

difficult to process the signals. Cutting temperature for wear monitoring in the tools have also 

been useful. Recent work by researchers show that tool life can be enhanced by cooling effect 

and certainly can be employed as the wear measuring or detection technique (Y\ild\ir\im, 

2019). some novel work related to sensors and wear measurement in important domains are 

shown in the Table 4: 

Table 4 :Sensors for wear measurement  in the various domains of tribology 

Author Sensor Type Domain Description 

(Li et al., 2021) PCBN 

embedded 

thin-film 

thermocouple 

(TFTC) 

Cutting 

operation 

Sensor shows good dynamic response and effective in 

monitoring of tool wear by analyzing the tool cutting 

wear temperature.  

(He et al., 2021) (PCBN) 

cutting tool 

embedded 

with a TFTC 

Cutting 

operation 

The research shows that cutting temperature is linked 

with the tool wear. Various cutting parameters have 

significant impact on the tool life. The proposed model 

learns from the signals obtained from temperature 

sensors, which help in better prediction of tool life. 

(Y. Liu et al., 2021) Triboelectric 

Nanogenerator 

(TENG) 

artificial 

prosthetics  

A self-powered sensor TENG was developed to 

monitor and detect wear for artificial joints. This sensor 

is the result of thermo-compression fabrication process, 

was effective in detecting the wear debris in the 



artificial joints. Solid relationship was seen between 

the electrical signals generated and size of debris 

detected. 

 (Simon and Deivanathan, 

2019) 

Accelerometer 

(Vibration 

Sensor) 

Drilling 

operation  

The flank wear of tool in the drilling process is 

monitored by the vibration signals acquired in the 

accelerometer. The drilling is performed on ASI 316L 

steel with the high-speed steel. It has been observed 

that the amplitude of vibration decreases as the wear 

increases.  

(Klocke et al., 2019) Acoustic 

Emission 

Sensor 

Drilling 

operation 

This paper deals with tool wear conditioning and 

estimation using the acoustic emission sensors. The 

fast Fourier transformation was used to analyze the 

signal. 

 (Jeong et al., 2021) Infrared 

Sensor 

Drilling 

operation 

Drill bit wear is monitored with infrared sensor which 

is the low cost method for predicting the wear. The 

drilling operation is performed on the titanium 

workpiece. The setup is easy to install and resistant to 

electromagnetic noise and the ambient temperature. 

The need for high performance signal analyzer is 

eliminated.   

 (Ramteke, Maddineni 

and Chelladurai, 2021) 

Magneto-

resistive 

Sensor 

 

Piston 

Rings and 

Cylinder 

The new model for detecting the running in wear has 

proposed in this paper. The combination of Magneto-

resistive Sensor and permanent magnet helped in 

detecting wear. Apart from that, the results were 

compared with simulation results from the COMSOL 

Multiphysics 5.0. The comparison proved that this 

sensor has a potential to detect the wear. The 

correlation was developed between the magnetic field 

strength variation and weight loss, surface roughness 

and emission of engine. 

 

(Wang et al., 2020) Piezoelectric 

ring 

Bearing Two types of sensors are used for the study, first one is 

the metal/piezoelectric ring transducers and second is 

the piezoelectric/metal ring transducers. The 

theoretical study model is prepared which is then 

compared with the experimental study. The study 

collects the signal as resonance and anti-resonance 

frequencies. The direct proportionality is seen in both 

the studies with resonance as well as anti-resonance 



frequencies i.e. the corrosion in pipes and wear in 

bearings. 

(Tekkalmaz et al., 2021) Piezoelectric Mechanical The author presents the early wear detection technique 

assisted by electromechanical impedance method. The 

experimentation was performed on AISI 1040 Steel 

block. Some statistical techniques like Root Mean 

Square and Correlation Coefficient Deviation were 

helpful in detecting the location and depth of wear. 

 

2.5.Sensors for Viscosity Measurement: 

The Lubrication is an important aspect of tribology. The behavior of lubricant for different contacts 

and applications will surely affect the operation of machinery. Viscosity is one of the important 

parameters to check the health of lubricant; since it can vary with change is temperature and 

loading conditions. The change in viscosity can alter the process like fluid transportation from one 

end of the pipe to other, working of engine of any vehicle, any industrial machine which needs 

lubrication. Moreover, it can be used as the quality indicating parameter in food industries and 

petro-chemical industries (Postnov, Moller and Sosnovtseva, 2018) (Bista et al., 2019) (Muñoz, 

Ancheyta and Castañeda, 2016). There are various conventional or basic methods for studying the 

viscosity like optical methods, capillary methods, and vibrational methods (Oh et al., 

2018)(Kurniati and others, 2018)(Webster and Eren, 2018). The optical fiber sensors are the 

advanced grade of conventional optical technology. This sensor has various advantages over the 

others like; they are of small size, almost zero electromagnetic interference, high sensitivity and 

lightweight  (Idris et al., 2020). Researchers have used quartz shear mode sensor for the 

measurement of viscosity of fluids (H. Wu et al., 2016). With further advancements in the field, 

Sensors made up of poly-vinylidene fluoride (PVDF) with piezo- electric mechanism have been 

used to detect the viscosity of fluid. This method uses resonating frequency of PVDF and the 

quality response factor for viscosity measurement (Lu et al., 2017). The method of resonating 

frequency has been further used with piezo-resonator disc radial mode for ultrasonic methods in 

viscosity determination (Purohit, Yadav and Jain, 2017). The researchers have also used gamma-

configured optical fiber sensor for viscosity measurement  (Yunus and Arifin, 2018). A new 

method involving the back scattering technology with optical coupler to detect the variations in 

the viscosity of fluid (Suhantoro and Yulianti, 2021). The ultrasonic sensors using the ultrasonic 

guides are among the attractive sensors because they can be used for high temperature and pressure 

applications. Researchers have used ultrasonic sensors using waveguides to detect and the 

changing viscosity of molten material, which are high temperature and pressure (Balasubramaniam 

et al., 1999). Since, the wave guides are easy to customize therefore they can be used for wide 

range of applications. Researchers have used the torsional waves for detecting the liquid viscosity 

and density (Lynnworth, 1977). This work was extended by researchers for measuring the viscosity 

and density of liquid using the two wave-guides with rectangular and circular geometries (Kim 



and Bau, 1989). For high viscous fluids, researchers developed a sensor, which can detect the 

viscosity of the fluid using the aluminum wave-guides in a pipe (Kazys et al., 2013). In a recent 

research related to ultrasonic sensors for viscosity measurement, authors reported the dipstick 

methods for the measurement of fluid properties such as viscosity and temperature. The study is 

the comparison between the ultrasonic properties of the wave-guides that are immersed inside the 

fluid to the ultrasonic properties of wave-guides that are immersed into the reference fluid (Huang 

et al., 2021). In the present scenario, the conventional viscosity measurement is not required, as it 

requires a lot of time. Therefore, with the advent of industry 4.0, various online-based sensor 

systems were developed to specifically to detect the lubricant / fluid property. Some of the recent 

studies for online sensor studies are given in the Table 5. 

Table 5:Recent studies on Online viscosity measurement 

Author Sensor-type description 

(Du, Wu and Cheng, 2015) MEAS, Fluid Property Sensor 

(FPS) 

The paper deals with the online methods 

of lubricant age detection. The 

parameters chosen are: dynamic 

viscosity, permittivity and wear particles. 

(Bordoloi and Roy, 2021) NTC thermistor, BTBMOF, 

IR transmitter and Receiver, 

MQ135 and MQ2 gas sensor, 

DHT 11. 

The paper deals with the online lubricant 

condition monitoring. Among the five 

sensors mentioned, BTBMOF is used for 

viscosity measuring. The method proved 

effective to check the lubricant oil 

condition. The data was analyzed with 

fuzzy interference system using mamdani 

method. 

(Wolak, Zaj\kac and Słowik, 2021) mid-FTIR, Stabinger 

viscometer, microchannel 

viscometer, Ubbelohde 

Capillary viscometer 

The paper aims to compare the kinematic 

viscosity of lubricant from four different 

sensors. It was seen that consistent results 

were only obtained for stabinger while as 

other were not precise. 

(Z. Liu et al., 2021) WKAS The paper deals with the condition 

monitoring of lubricant oil of intelligent 

aircraft engine. Various parameters were 

chosen for oil degradation and viscosity 

is one among those. The paper concludes 

by saying that, WKAS can be used for 

online condition monitoring. 

(Sun, Liu and Tan, 2021) microacoustic sensor It has been seen that viscosity of micro 

based mineral oils can be measured by 

microacoustic sensor, however it cannot 

detect the effect of additives on the 

macroscopic viscosity. 

 

2.6.Sensors in Cutting Tool Tribology 



The study of tribology for cutting tool have evolved a lot in the past 100 years.  Researchers putting 

an enormous amount of time for studying the wear of cutting tools in order to reduce the 

geometrical errors in the work piece. The irregular geometries of work piece are responsible for 

the malfunctioning of product, which further might be responsible for early maintenance cost, 

extra fuel consumption, lag in performance etc. Hence, it is necessary to get the accurate data 

related to the surface roughness and wear on the cutting tool for efficient machining. The various 

types of tool wear monitoring sensors are accelerometer, dynamometer, acoustic emission, and 

temperature sensor (Prasad and Babu, 2017) (Suárez et al., 2019) (Kunto\uglu and Sa\uglam, 

2019)(Scheffer et al., 2003) . The above-mentioned sensors are indirect condition monitoring 

sensors. Tool health can be best analyzed by flank wear removal (Yan et al., 1999). Recent studies 

have shown that vibration sensors also have the potential to detect the tool wear. However, there 

are some challenges also like the sensitivity of vibration signals due to the surrounding noise 

(Lauro et al., 2014). The cutting process is responsible for generating acoustic emission signals. 

Due to its broadband criteria, it can help detecting the frictional forces and wear (Neslušan et al., 

2015). It has been observed that acoustic emission sensors have the ability to detect and oppose 

the catastrophic wear (Neslušan et al., 2015). To understand the wear mechanism of cutting tool, 

various technologies like AI and ML have been employed. Researchers have used machine 

learning with the acoustic emission signals to predict the tool wear of aluminum ceramic composite 

with 10% SiC (Twardowski Pawełand Tabaszewski, Wiciak--Pikuła and Felusiak-Czyryca, 2021). 

The prediction error was seen to be less than 6%. Research has been done to compare the ability 

of five types of sensors in order to measure the tool wear. The signal obtained were due to the 

cutting forces, acoustic emission, temperature, current and vibration. Among the all types of 

signals/sensors, the AE and temperature proved to be efficient for wear prediction and detection 

(Kunto\uglu and Sa\uglam, 2021). In addition, AE has been employed to detect and measure the 

friction and wear in steel contacts under dry slip. It was concluded that RMS and AE energies 

integrated are the volume for wear provided the tribological or wear method remains constant 

(Geng, Puhan and Reddyhoff, 2019). Surface roughness can also be used for tool condition 

monitoring because it is continuously altered due to wear and friction. Researchers have shown 

the direct impact of surface roughness on the ultrasonic echo. Hence, it can be also used to detect 

the tool condition monitoring (Feng et al., 2020). The cutting process is directly responsible for 

heat generation. The wear developed on the cutting tool also increases the temperature. So, the 

temperature-based sensors can also be used to detect the tool wear. The infrared based temperature 

sensors have studied thoroughly for their application of tool condition monitoring (Han et al., 

2020). Researchers have used temperature sensor TFTC for collecting the data from cutting tool. 

The TFTC sensor have been embedded into the cutting tool. The signals from the sensor have been 

used to predict the tool wear using SSAEs-BPNN model (He et al., 2021). It has been observed 

that the tool tip temperature signal has high correlation with the tool wear. The tool temperature 

can be used to detect the early wear, alarm system and classify the wear stage during the cutting 

operation. Similar kind of research shows that the data can be better handled when it was treated 

with Mahalanobis-Taguchi System (Rizal et al., 2017). This approach has the ability to analyze 



the data from the temperature sensors and classify the different tool-wear states in an abnormal 

group. 

3. Tribology in the Light of Industry 4.0 

The term “Industry 4.0” is the technical representation of fourth industrial revolution (Kamble, 

Gunasekaran and Gawankar, 2018)(Jandyal et al., 2021). With the advent of industry 4.0, there 

has been significant increase in the automation of manufacturing system, efficient sensors for 

diagnostics and enhancement in the information transmission system. The industry 4.0 promises 

enhancement in productivity with the reduction in production cost. Most important concept of 

industry 4.0 is the “Smart industry” where everything is interconnected with each other and where 

the human robot interaction is enabled. The industry 4.0 encourages amalgamation of sensors, 

communication system and internet. It has nine fundamental pillars which include advanced 

robotics, 3D Printing, augmented reality, simulation, horizontal/vertical integration, internet of 

things, cloud computing, cyber security and big data and analytics. The tribology has a strong 

dependence on the industrial revolution.  

With the advent of new manufacturing era, new tribological challenges have been developed which 

need to be solved with modern methods and techniques. For any industrial equipment, its design 

and working can have a significant influence over the wear and friction, hence on their 

performance and reliability. Monitoring of wear and friction by studying the parameters like 

temperature, vibration can help in detecting and predicting the equipment failure. New sensors for 

bio tribology, green tribology pave the way for the betterment of human life and low carbon 

emission. Cyber-physical system and AI are the important components of industry 4.0. And have 

contributed and enhanced the tribological research any many ways. Separate sections for cyber 

physical systems and AI/ML are included below in accordance with the tribological studies:  

3.1. Tribology and Cyber-Physical System 

Tribology has played a well-known role in the field of maintenance and diagnostics. To reduce the 

cost of working and to avoid the failures in any mechanical system, it is necessary to operate the 

machine within the fixed parameters and run the early diagnostics. From the recent literature 

survey, it is very evident that tribology has done a lot in predicting and diagnosing the faults in 

bearing division of materials and mechanical engineering (Randall, 2004)(Yu, Cheng and Yang, 

2005)(Elasha et al., 2015). The work in this field has been extended using the cyber-physical field 

systems, commonly known as “Tribology 4.0” (Glavatskih and Höglund, 2008). This field is the 

integration of sensors with the internet hence providing the real-time data and converting the off-

line sensors into the on-lines ones, hence predicting the wear and online monitoring is achieved 

(Randall, 2016) (Marklund, 2017). Cyber physical system is the amalgamation of embedded 

system with the physical system. The system has computation, communication and control 

capabilities. These triple ‘C’ Capabilities give the system autonomy to detect, predict and 

communicate the data with the user in the least possible time. The Cyber Physical System uses the 

AI to acquire the information of real time environment.  



The vein diagram showing the combination of sensors with cyber-physical system and 

conventional tribology in order to acquire real-time data is shown in Figure 5. Oil analysis has also 

been a popular method to determine the wear and lubrication in the friction/tribological pairs 

(Marklund, 2017). The various methods to check the oil condition are ferrography, spectrum and 

some methods of chemical technology (Wu et al., 2008)(Elnasharty et al., 2011)(Idros, Ali and 

Islam, 2014). Surely online methods are better way to determine the oil condition. Various online 

oil viscosity measurement techniques are acoustic-vibration measurement, quartz-resonant, 

capillary and micro vibration method (Agoston, Ötsch and Jakoby, 2005)(Markova et al., 

2011)(Durdag, 2008)(Stoyanov and Grimes, 2000). To detect the chemical changes in the oil 

caused by the contamination is done by capacitance and impedance methods (Raadnui and 

Kleesuwan, 2005)(Turner and Austin, 2003). The wear in the tribo-pair which gets into the oil is 

detected by photo-electric sensor, combination of photoelectric and magnetic sensor, inductance 

sensor and the sensors based on capacitance and ultrasonic methods (Kwon et al., 2000)(Kuo, 

Chiou and Lee, 1997)(Wu et al., 2009)(Han, Hong and Wang, 2011)(Edmonds, Resner and 

Shkarlet, 2000).  

Some other online methods to check the wear of material are: infrared (IR) and Fourier transform 

infrared (FTIR) spectrometry (Adams, Romeo and Rawson, 2007), XRF (X-ray fluorescence) 

sensors (de Voort, Sedman and Pinchuk, 2011), photo-acoustic spectroscopy (PAS) (Koskinen et 

al., 2006), fluorescence spectroscopy (Becker, 2008). Research has been done to develop the 

methods online-based sensor monitor for detecting the wear (Chiou, Lee and Tsai, 1998), which 

works on the principal of electromagnetic flow. Also for the marine based diesel engine, study has 

performed and the new online method for detecting the ferromagnetic materials in the oil, which 

can help in detecting the quality of engine-oil (Liu et al., 2000).  



 

Figure 5: Vein diagram between the sensors, conventional tribology and the cyber-physical system 

3.2. Tribology with AI and ML 

In the recent years, lot of work has been done to in the field of AI and Tribology. ML and deep 

learning models have been employed to enhance the tribological properties of materials 

(Rosenkranz et al., 2021). It all started in 1998, when artificial neural network was applied on the 

data points obtained from the lubricated ball on disk sliding experiment and microscopy (Umeda, 

Sugimura and Yamamoto, 1998). The relationship was successfully between the experimental 

conditions and the obtained particle feature. Thus, by this algorithm, the particle feature could be 

predicted and hence the condition monitoring. Soon after that, researchers applied the two 

algorithms, which were trained with vibration input signals for condition monitoring in ball 

bearing (Subrahmanyam and Sujatha, 1997). For journal bearings, researchers have used ANN 

based convolution neural network with acoustic emission signals to characterize the bearing 

condition into the three zones; running –in, insufficient lubrication and particle contamination 

(König et al., 2021). This algorithm worked with the accuracy of 97% and the sensitivity of 100%. 

The AI and ML can be regarded as disruptive technologies in field of science and engineering. It 

has found its relevance almost every field. For material science and tribology, the field of AI and 

ML have been exploited a lot and have solved almost every difficult problem in this domain. Since, 

every tribological process be it wear, friction, are the time dependent irreversible process where 

every data point comes with the material loss. The block diagram of AI enabled sensor system for 

tribological studies is shown in Figure 6. 



 

Figure 6: AI enabled sensor system for predicting and monitoring tribological properties 

Here the importance of AI and ML techniques pave a way for new advancements by reducing the 

time, providing mathematical model and predicting the wear, friction, wear depth etc. Some 

important work in the related to Tribology and the AI/ML models involved are shown in Table 6. 

Table 6: Recent work in AI/ML for predicting various tribological properties 

Author ML/AI Model Operation Domain Parameters 

Predicted 

(Egala, Jagadeesh 

and Setti, 2021)  

ANN and Linear 

Regression 

model 

Flat Pin on disk 

Tribometer 

Short Castor Oil Fibre wear, 

interfacial 

heat, and 

COF 

(Cetinel, 2012) Back propagation 

ANN 

Pin on disk 

tribometer 

thermally sprayed 

Al2O3 -TiO2 

coatings 

linear wear, 

COF 

Sahraoui et.al 

(Sahraoui et al., 

2004) 

back propagation 

ANN 

Pin on disk 

tribometer 

HVOF sprayed Cr-C-

Ni-Cr and WC-Co 

coatings and 

electroplated hard 

chromium 

COF 

(Upadhyay and 

Kumaraswamidhas, 

2016) 

back propagation 

ANN 

Pin on disk 

tribometer 

multilayer nitride 

PVD coatings 

 wear rate, 

COF 

(Boidi et al., 2020) Hardy 

multiquadric 

RBF 

mini traction 

machine 

surface texture design 

for EHL contacts 

COF 



(Durak, Salman 

and Kurbano\uglu, 

2008) 

back propagation 

ANN 

Journal bearing test 

rig 

PTFE-based additives 

in mineral oil 

COF 

(Humelnicu, 

Ciortan and 

Amortila, 2019) 

back propagation 

ANN 

pin-on-disk vegetable oil-diesel 

(Mixture) 

COF 

(Bhaumik, Mathew 

and Datta, 2019) 

feed forward 

ANN 

four-ball-tests Blend of coconut, 

castor and palm oil 

with friction 

modifiers (MWCNT 

and graphene) 

COF 

(Baboukani et al., 

2020) 

Bayesian 

modeling 

Sliding test Graphene and 

transition metal 

dichalcogenide 

maximum 

energy 

barriers 

(Argatov and Chai, 

2021) 

Multi-Layer 

Perceptron 

Sliding Test Inconel 600 alloy, 

aluminum alloy 

matrix composites 

Wear 

Coefficient, 

Specific 

wear rate 

(Kristipadu and 

Lawrence, 2021) 

Regression 

method, Support 

Vector Machine, 

Decision Tree 

method, LSTM 

linearly 

reciprocating 

tribometer  

Low Carbon Steel COF 

 

Table 6 shows the recent developments in the field of tribology and AL/ML. It is said that AL/ML 

techniques are bit complex, need certain expertise but in the end, they help in saving the precious 

time resources.  Mostly, tribological problems are non-linear in nature, which makes AI and ML 

more suitable for the analysis.  From COF to wear and material composition, the tribology has 

been expanded. With the development of new algorithms, The AI makes it easy to predict the 

tribological properties of materials and predict the future result, helps to create the best 

composition of material/Nano-additive for the particular application. Besides this, In future AI and 

ML can be used in deciding the size of Nano-particles for enhancing the lubrication, reducing 

friction and wear.  

The paper shall help tribologists and industrialists to relate the various aspects of tribology with 

the various pillars of Industry 4.0 and help to devise tribological systems with improved efficiency. 

Also, the area of sensors can be further developed in respect of Industry 4.0 keeping in view the 

tribological applications.   

4. Limitations  



The current study does not focus on the aspects such as coatings, surface treatments, advanced 

materials and environments which affect the friction and wear. The paper only relates the basic 

parameters of tribology. The paper also does not include the issues regarding reliability of data 

and repeatability of the data. The paper also does not focus on tribological systems which have 

an interface with biological systems.    

5. Conclusions and Recommendations 

The complexity and interdisciplinarity nature of the field of tribology, an important aspect of 

various engineering equipment, implementation of various principles of industry 4.0 would not 

be possible without augmenting the various parameters important from tribological point of view 

with various pillars of Industry 4.0.  The various concepts of industry 4.0 such as Artificial 

Intelligence (AI), Machine Learning (ML) and Internet of Things (IoT) can be augmented with 

various tribological systems by developing smart sensing technologies which will enable the end 

users to monitor the various parameters such as friction, wear and lubricant performance. The 

quest for minimizing human intervention in operating and maintaining tribological systems is 

possible only by interconnecting various tribological systems and collecting and sharing data. 

The data is important for monitoring and remote operation of engineering systems. Data 

pertaining to the various parameters critical from tribological point of view such as coefficient 

of friction, wear rate, temperature, humidity, contact pressure and surface characteristics obtained 

by using advanced sensors can be helpful in implementing various pillars of Industry 4.0 in 

tribology related industries. Determining the health of machinery and carrying out the 

maintenance of machinery particularly exposed to extreme environments shall become easier, 

cost effective and efficient by employing the augmented approach. The various applications areas 

include defence, marine(offshore), space, high altitude monitoring and operation of engineering 

systems. A deeper understandings of the concepts of tribology and Industry 4.0 is needed to 

implement industry 4.0 in tribological systems.      
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